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ABSTRACT

In consideration of competition between cation-π and hydrogen bond interaction forces, we designed a novel receptor, 1,3,5-tris(pyrrolyl)-
benzene, which shows high selectivity for acetylcholine (ACh). The selectivity of the receptor for ACh over other ammonium cations is
demonstrated by the ion-selective electrode (ISE) method in buffer solution. The binding free energy of the receptor with ACh in chloroform
solution is measured to be 3.65 kcal/mol in the presence of chloride anion by nuclear magnetic resonance spectroscopy, and that in water
is estimated to be much greater (∼6 kcal/mol).

Recent advances in molecular recognition and supramolecu-
lar chemistry have made it possible to develop highly
selective novel receptors for specific guests.1 Among many
factors, the cation-π interaction pioneered by Dougherty and
co-workers2 has been identified as a vital ingredient of the
host-guest chemistry of biological systems3 and the chem-
istry of nanostructures.4

Acetylcholine (ACh; N+(CH3)3CH2CH2OCOCH3), an im-
portant cationic neurotransmitter, tends to be bound to
acetylcholinesterase via multiple cation-π interactions.5 The
ACh receptor has long served as a target molecule in
designing potential therapeutic agents against various ail-
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ments, for example, myasthenia gravis, glaucoma, and
possibly Alzheimer’s desease.6 Thus, the development of an
appropriate receptor for ACh would aid the discoveries of
novel drugs with understanding the binding mechanism. In
addition, as ammonium-containing compounds are very
important in chemical, biological, and physiological molec-
ular systems, differential recognition of these species is
extremely desirable.7 Thus, we here report a systematically
designed and synthesized novel receptor for ACh that
displays a conspicuous preference for ACh over various
ammonium cations.

To design an efficient receptor for ACh, we have employed
a computer-aided receptor modeling approach.8 In consid-
eration that the optimal distance between the benzene
centroid (or center of aromatic rings) and the nitrogen of
NMe4

+ is around 4.5 Å,9 we have chosen the benzene-based
tripodal system, which has attracted much interest recently
(Figure 1).10-12 In order for a receptor to be highly selective

for ACh or NMe4
+ over NH4

+, the dispersive-driven cation-π
interaction must dominate the host-guest interaction,9 while
H-bond interaction with NH4+ should be minimized.

Since pyrazole10 and imidazole11 are known to have strong
interactions with NH4+, and pyrrole and indole are predicted
to provide very strong cation-π interactions,13 we have carried
out ab initio calculations14 of tripodal receptors with subunits
of imidazole, pyrazole, indole, and pyrrole (1-4), as shown
in Figure 1.

From our theoretical investigations, the unmethylated
benzene base (1b-4b) is found to be a better receptor for
NMe4

+, since methyl groups (1a-4a) tend to sterically hinder
these subunits from facing the center of the receptor,
hampering the formation of preorganized structure in favor
of the cation-π interaction. Even in the unmethylated benzene
base, only pyrrole subunits completely face the center and
facilitate cation-πbinding, while other subunits are skewed
and as a consequence the cation-πinteraction is diminished.
In addition, ab initio calculations also indicate that the
selectivity for NMe4+ over NH4

+ is strongly enhanced for
the receptors with pyrrole and indole subunits, while it is
decreased for the receptor with the imidazole subunits. High
level ab initio calculations predict that 1,3,5-tris(pyrrolyl)-
benzene,4b, is an efficient receptor for NMe4

+ over NH4
+.

This is further demonstrated from the free energy perturbation
calculations employing molecular dynamics simulations.15

We confirm the selectivity and affinity of4b for ACh over
various ammonium ions both theoretically and experimen-
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Figure 1. Schematics of tripodal receptors with subunits (1, L )
imidazole;2, L ) pyrazole;3, L ) indole;4, L ) pyrrole;a, R )
Me; ,: R ) H).
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tally. The calculated binding energy of4b with ACh is almost
the same as that with NMe4

+, as expected. The ab initio
predicted structure of ACh bound to4b is shown in Figure
2.

To verify our prediction, we synthesized4b, which was
achieved in one pot from readily available pyrrole,t-BuOK,
and 1,3,5-tris(bromomethyl)benzene with 36% yield in
THF.16 Then, we performed an ion-selective electrode (ISE)
study,10,17,18which confirms the highly selective binding of
4b to ACh over NH4

+ by 24 times (logKACh/NH4
+ ) -1.38)

in buffer solution (Figure 3).19 The selectivity of4b to ACh
over NH4

+ at pH 7.4 is almost the same as that of pH 8.0.
The selectivities of other ammonium cations decrease in the

order logKACh/NH4
+ ) -1.38; logKMe4N

+/NH4
+ ) -1.26; log

KMe3NH+/NH4
+ ) -1.11, log KMe2NH2

+/NH4
+ ) -0.97, log

KMeNH3
+/NH4

+ ) -0.91.
To investigate binding affinity of4b for ACh, we

performed nuclear magnetic resonance (NMR) titration.20

The binding free energy and association constant in
chloroform solution in the presence of Cl- ions are 3.65 kcal/
mol and 472 M-1, respectively.21 We note that this binding
energy seems to be not large. However, recently, Roelens
and co-workers22 have reported that the free energy signifi-
cantly depends on the counterions. In particular, in the
presence of Cl- ions, the binding free energy for ACh is
much smaller than other cases as a result of the ion pair
formation. It is thus expected that the binding free energy
of 4b for ACh in the absence of Cl- ions (the measurement
was not feasible because of the poor solubility) would much
increase (possibly close to our predicted value∼5 kcal/
mol).14 Although the binding strength between ACh and4b
in the chloroform solution may not be strong because of the
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+. To find out if the receptor4b binds ACh in its cavity, we
synthesizedN-benzylpyrrole5 and carried out an ISE experiment. The
selectivity of 5 for ACh over NH4

+ (log KACh/NH4
+ ) -0.95) is reduced

compared with that of4b (log KACh/NH4
+ ) -1.38). The difference in the

selectivities of4b and5 indicates that the higher affinity of4b with ACh
should arise from four cation-π interaction sites by ACh with a benzene
moiety and three pyrrole subunits, in contrast to the case of5 interacting
with ACh for which there are only two cation-π interaction sites by ACh
with a benzene moiety and one pyrrole subunit. Since the hydrophobic
effects by4b and 5 are considered to be similar as a result of the same
benzene and pyrrole moieties present in both receptors, their significant
difference in affinity would be explained by their difference in the number
of cation-π interaction sites.
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titrated by chloroform-dsolution (20 mM) of4b at 298 K. The addition of
AChCl led to slight upfield shift (ca. 0.1 ppm) of the N-CH3 protons of
ACh, indicating that ACh is inside the cavity of4b by the cation-π
interactions. Data analysis was made using eqnmr program.20 The binding
site of ACh was confirmed to be the tetramethylammonium group (Figure
2). The NMR analysis in water was not feasible, because4b was almost
insoluble in water.
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Figure 2. Top and side views of the calculated structures of4b‚
ACh.

Figure 3. Electropotential graph showing ISE responses of4b to
ACh and NH4

+ in pH 8.0 buffer solution at 298 K.
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high miscibility between ACh and chloroform, that in the
aqueous solution is high as a result of the poor miscibility
of ACh with water. Since the association constant of4b with
NH4

+ in water is measured to be 1300 M-1 in extraction
experiments23,24 and the ISE experiment shows 24-fold
selectivity of ACh over NH4+ in buffer solutions, the
association constant of4b with ACh in water is estimated
to be up to∼30 000 M-1 (or binding free energy of 6.1
kcal/mol).

In conclusion, in the buffer solution, 1,3,5-tris(pyrrolyl)-
benzene (4b) is a good receptor for ACh, NMe4

+, NH3Me+,
NH2Me2

+, and NHMe3+ over NH4
+, while ACh and NMe4+

are slightly favored over NH3Me+, NH2Me2
+, and NHMe3+.

The present approach to design novel receptors with selectiv-
ity would aid design of novel functional molecular systems
and biologically important chemosensors based on ISE. Our
results would be useful in molecular recognition studies of
nanostructures in the gas phase wherein the origin of pure
interaction forces is elucidated.25
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